2021年9月9日(木) 10:00~12:00 日本XAFS研究会 XAFS夏の学校

EXAFS解析の考え方

名古屋大学 シンクロトロン光研究センター 田渕雅夫

EXAFS(Extended X-ray Absorption Fine Structure)

電子は 波でもある

	粒子	波	
運動量:p	mv	ħk	波数:
運動エネルギー:E	$\frac{1}{2}mv^2 = \frac{p^2}{2m}$	$\frac{\hbar^2 k^2}{2m} = \frac{p^2}{2m}$	

<mark>運動エネルギー</mark>:入射X線のエネルギー E_X からポテンシャル V を 引いた<mark>残り(ΔE)</mark>

 $k = \frac{2\pi}{\lambda}$

$$\Delta E = E_X - V = \frac{\hbar^2 k^2}{2m} \implies k = \sqrt{\frac{2m}{\hbar^2} \Delta E} \implies \lambda = 2\pi \sqrt{\frac{\hbar^2}{2m\Delta E}}$$

エネルギー(ΔE)が大きいほど、波長(λ)が短い「波」になる!

入射X線のエネルギーが変わると、 電子波の波長が変わる

- 電子は波でもある
- 電子波の発生源(原子)を中心に周りに広がる(進行する)
- 周辺の原子によって散乱される

- 電子は波でもある
- 電子波の発生源(原子)を中心に周りに広がる(進行する)
- 周辺の原子によって散乱される
- 散乱されて、元の原子の場所に戻ってくる波(後退波)は 進行波と干渉して、「定在波」を作る \ / \ / \ / \ / \ / \ / \ / \ AAAAAA

進行波と後退波が干渉すると、動かずに振幅が変動する波になる。

電子波の(終状態の)波の形が変わると何が起こるか?

$$E_f - E_i - \hbar\omega = 0$$

フェルミの黄金律
電子の遷移確率(遷移頻度)
 $|\langle \psi_f | V | \psi_i \rangle|^2 \delta(E_f - E_i - \hbar\omega)$
遷移前の状態
(始状態)
遷移の原因になる外乱
 $V : A \cdot p$
A:電磁波を表すベクトルポテンシャノ

p:電子の運動量演算子

双極子遷移 X線が原因の電子遷移 =X線吸収

遷移後の状態
(終状態)
入射X線のエネルギーが
変わると変化する

電子波の(終状態の)波の形が変わると何が起こるか? 電子の遷移確率(遷移頻度) $|\langle \psi_f | V | \psi_i \rangle|^2 \delta(E_f - E_i - \hbar \omega)$ フェルミの黄金律 遷移の原因になる外乱 $V: \boldsymbol{A} \cdot \boldsymbol{p}$ $V: \boldsymbol{A} \cdot \boldsymbol{p} \propto \hat{e} \cdot \boldsymbol{r}$ 例えば $\hat{e} = (1,0,0)$ なら

光の偏光方向の単位ベクトル。

利えば $\hat{e} = (1,0,0)$ なら $V: \boldsymbol{A} \cdot \boldsymbol{p} \propto \hat{e} \cdot \boldsymbol{r} = \boldsymbol{x}$

双極子近似による吸収係数 $\mu \propto \sum |\langle \psi_f | \hat{\boldsymbol{e}} \cdot \boldsymbol{r} | \psi_i \rangle|^2 \delta(E_f - E_i - \hbar \omega)$ $\langle \psi_f | x | \psi_i \rangle = \int \psi_f^* x \, \psi_i \, dx$ 「終」状態の波動関数 「始」状態の波動関数 「始」状態が原子に束縛された状態なら、 1) その波動関数は小さな範囲でだけ値を持つので、 終状態の波動関数の吸収原子の位置での大きさが重要 「始」状態が S 軌道、外乱部分が x (直線偏向の光)なら、 2)「終」状態の平面波はx方向に進行する。 3)「終」状態が、x方向の奇関数の時、吸収が大きくなる 偶関数の時、小さくなる。

EXAFS(Extended X-ray Absorption Fine Structure)

特定原子種の局所構造(配位子の種類、数、距離)がわかる。

EXAFSスペクトルに含まれる情報

典型的な金属箔のスペクトル (純金属なので、近接原子種は中心原子と同じ)

XANESスペクトル

<mark>原子の「状態」によって変わる。</mark> 「状態」 = 価数、軌道、スピン…

原子の「環境」には直接は依存しない。 「環境」 = 原子間距離、配位数、配位種、立体配置

間接的には依存する ex.「原子間距離が変わると価数が変わる」 「配位数が変わると軌道の形が変わる」 ニワトリと卵

従って、パターン認識的に(絵として見て)解析できることが多い。 Athena/Artemis を使うなら、Athena の守備範囲。

EXAFSスペクトル

原子の「状態」の影響はほぼない。(XANESの守備範囲) 「状態」 = 価数、軌道、スピン...

原子の「環境」によって変化する。 「環境」 = 原子間距離、配位数、配位種、立体配置

解析を行うには、「原子間距離」、「配位数」などのパラメータを 取り込んだ「理論式」を立ててパラメータフィッティングを行う 必要がある。

Athena/Artemis を使うなら、Artemis の出番。

XAFSスペクトルは周辺原子までの 「距離」には依存するが、「方向」には依存しない。

同一種、等距離の原子の集合 = シェル

青原子4個が乗る青い丸はシェル 「第1シェル」「最近接シェル」…

赤原子4個が乗る赤い丸もシェル 「第2シェル」「第二近接シェル」…

緑原子は、種類が違うので第2シェル には入れられない。独立のシェルを 作る。

…でも一緒にする時もある

EXAFS解析を行う際の一つのユニット。

- ・一つのシェルに属する原子までの距離が多少異なっていても
 「構造の乱れ」とらえて、一つのシェルだとみなす。
- ・左の例は、原子位置が「ランダム」にズレているので

「乱れ」と捉えるしかない

・右の例は、規則的に配置がズレているので、二つのシェルに

分けて考えることも可能。

- 1) 解析の目的としてこの距離の差を区別して情報を得たいか
- 2) そのためにはパラメータの数が増えてしまう(解析の精度が下がる) デメリットを受け入れられるか

一つのシェルに対する EXAFS の理論式 (解析のスタート地点)

EXAFSスペクトルに含まれる情報

EXAFSスペクトルに含まれる情報

注意: χ(R) のピーク位置は 原子間距離Rそのものではない。!!

$$\chi(k) = \frac{1}{k} S_0^2 \frac{N}{R^2} |f(k,\pi)| \sin(2kR + \phi(k)) \exp(-2\sigma^2 k^2 - 2\frac{R}{\lambda})$$

振動の周波数が $R + C_1$ に変わったことになるので フーリエ変換したときのピーク位置も $R + C_1$ の位置にズレる。 一つのシェルに対する EXAFS の理論式 (解析のスタート地点)

$$\chi(k) = \frac{1}{k} S_0^2 \frac{N}{R^2} |f(k,\pi)| \sin(2kR + \phi(k)) \exp(-2\sigma^2 k^2 - 2\frac{R}{\lambda})$$

各シェルに対してこの式が書ける

従って全体としては、

$$\chi(k) = \sum_{R, \, Element} \chi_{R, \, Element}(k)$$

多くの場合、複雑になりすぎる!

フーリエフィルタリング (2重フーリエ変換)

一つのシェルに対する EXAFS の理論式 (解析のスタート地点)

$$\chi(k) = \frac{1}{k} S_0^2 \frac{N}{R^2} |f(k,\pi)| \sin(2kR + \phi(k)) \exp(-2\sigma^2 k^2 - 2\frac{R}{\lambda})$$

たった一つのシェルに着目しただけで こんなに多数のパラメータがある式を使って どうやって解析を行うのか?

EXAFSスペクトルに含まれる情報

「ポータブル」なパラメータ

中心原子依存、

ポータブル:「持ち運びできる」 別の測定で出た値を 他の測定の解析に使っていい

 $\chi(k) = \frac{1}{k} S_0^2 \frac{N}{R^2} |f(k,\pi)| \sin(2kR + \phi(k)) \exp(-2\sigma^2 k^2 - 2\frac{R}{\lambda})$ 众位相因子

散乱原子依存

X 包絡線形状: 近接原子種

ポータブルなパラメータは

「中心原子」、「散乱原子」、「中心原子と散乱原子のペア」の 種類だけに依存する。

「中心原子」、「原子ペア」が同じなら他の系でも 同じ値を持つと考えて良い。 最も基本的な未知試料解析

$$\chi(k) = \frac{1}{k} S_0^2 \frac{N}{R^2} |f(k,\pi)| \sin(2kR + \phi(k)) \exp(-2\sigma^2 k^2 - 2\frac{R}{\lambda})$$

XAFSの式に含まれる未知量 S_0 、N、f、R、 ϕ 、 σ 、 λ

1回の測定であらわにわかる独立の量は3つ。

- a) 振幅
- b) 振動のピークの位置
- c) 振動の個々のピークの高さ (包絡線の形状)

最も基本的な未知試料解析

$$\chi(k) = \frac{1}{k} S_0^2 \frac{N}{R^2} |f(k,\pi)| \sin(2kR + \phi(k)) \exp(-2\sigma^2 k^2 - 2\frac{R}{\lambda})$$

XAFSの式に含まれる未知量 S_0 、N、f、R、 Φ 、 σ 、 λ
最も基本的な未知試料解析

$$\chi(k) = \frac{1}{k} S_0^2 \frac{N}{R^2} |f(k,\pi)| \sin(2kR + \phi(k)) \exp(-2\sigma^2 k^2 - 2\frac{R}{\lambda})$$

XAFSの式に含まれる未知量 S_0 、N、f、R、 Φ 、 σ 、 λ

「標準」試料(N、R: 既知、 σ 、 λ : 適当に仮定)を測定。

a) 振幅 **S**₀、N、(R) b) 振動のピークの位置 **R**、Φ c) 振動の個々のピークの高さ *f*、σ、λ、(R)

 $\rightarrow S_0$ 、 Φ 、fが決まる。(ポータブルな量が決まった!)

最も基本的な未知試料解析

$$\chi(k) = \frac{1}{k} S_0^2 \frac{N}{R^2} |f(k,\pi)| \sin(2kR + \phi(k)) \exp(-2\sigma^2 k^2 - 2\frac{R}{\lambda})$$

XAFSの式に含まれる未知量 S_0 、N、f、R、 Φ 、 σ 、 λ

- 「未知」試料(N、R、 σ : 未知、 λ : 適当に仮定)を測定。 (S_0 、 Φ 、fは「標準」試料で決定済み)
 - a) 振幅 *S*₀、*N*、(*R*) b) 振動のピークの位置 *R*、*Φ* c) 振動の個々のピークの高さ *f*、*σ*、*λ*、(*R*)
 - $\rightarrow N$ 、R、 σ 、f(組成、距離、乱れ、原子種)が決まる。

本当の EXAFS スペクトル解析は 2ステップ

第1ステップ

- 「標準」試料(N、R: 既知、 σ 、 λ : 適当に仮定)を測定。 a) 振幅 S_0 、N、(R)
 - b) 振動のピークの位置 R、Φ
 - c) 振動の個々のピークの高さ $f, \sigma, \lambda, (R)$ $\rightarrow S_0, \Phi, f$ が決まる。

第2ステップ

- 「未知」試料(N、R: 未知、 σ 、 λ : 適当に仮定)を測定。 a) 振幅 S_0 、N、(R)
 - a) 派幅 b) 振動のピークの位置 $R_{\chi} \Phi$
 - c) 振動の個々のピークの高さ $f, \sigma, \lambda, (R)$
 - $\rightarrow N$ 、R、 σ 、f(組成、距離、乱れ、原子種)が決まる。

Artemis を使うと、第1ステップをシミュレーション(FEFF)で 済ますことができるので一見、第2ステップしかないように見える。

ベガードの法則

内部では何が?

- 平均格子定数の格子位置に整列?
- ランダムな結合長の平均?
- ・特殊な規則構造?

XAFSで見てみよう

1) 測定可能なのは As-K, Ga-K

2) 標準試料として準備可能なのは GaAs, InAs

GaAs よりGa->As, As->Ga InAs よりAs->In

3) 未知試料は

 $In_xGa_{1-x}As : (InAs)_x(GaAs)_{1-x}$

- As->Ga, As->In 配位数比: 平均組成
- As->Ga, As->In 結合長: 局所構造
- Ga->As 結合長: 局所構造(As からの観察と矛盾しないか)

$$\chi(k) = \frac{1}{k} S_0^2 \frac{N}{R^2} |f(k,\pi)| \sin(2kR + \phi(k)) \exp(-2\sigma^2 k^2 - 2\frac{R}{\lambda})$$

(In_xGa_{1-x})As のAs 周りの構造を知りたい。

1) 標準試料として GaAs, InAs を準備し、測定する。

2)
$$N$$
(=4), R (As-Ga=2.45, As-In=2.62) は既知。
 σ (=0.05)は仮定。 λ は無視(∞ 扱い)。
 \rightarrow 未知だった S_0 , f_{As-In} , f_{As-Ga} , Φ_{As-Ga} が決まる。

3) 構造未知の InGaAs を測定する。 $S_0, f_{As-In}, f_{As-Ga}, \Phi_{As-In}, \Phi_{As-Ga}$ が分かっているので、 $\chi(k) = \chi_{As-In}(k) + \chi_{As-Ga}(k)$ と考えてフィッティングすると $\rightarrow N_{In}, N_{Ga}, R_{As-In}, R_{As-Ga}$ が決まる。

$$\chi(k) = \frac{1}{k} S_0^2 \frac{N}{R^2} |f(k,\pi)| \sin(2kR + \phi(k)) \exp(-2\sigma^2 k^2 - 2\frac{R}{\lambda})$$

3) 構造未知の InGaAs を測定する。 $S_0, f_{As-In}, f_{As-Ga}, \Phi_{As-In}, \Phi_{As-Ga}$ が分かっているので、

$$\chi(k) = \chi_{AsIn}(k) + \chi_{AsGa}(k)$$

$$= \frac{1}{k} S_0^2 \frac{N_{In}}{R_{AsIn}^2} f_{AsIn} \sin(2kR_{AsIn} + \phi_{AsIn}) \exp(-2\sigma_{AsIn}^2 k^2)$$

$$+ \frac{1}{k} S_0^2 \frac{N_{Ga}}{R_{AsGa}^2} f_{AsGa} \sin(2kR_{AsGa} + \phi_{AsGa}) \exp(-2\sigma_{AsGa}^2 k^2)$$

$$\rightarrow N_{\text{In}}, N_{\text{Ga}}, R_{\text{As-In}}, R_{\text{As-Ga}}$$
が決まる。

結果

歴史的経緯

Atomic scale structure of random solid solution: EXAFS study of GaInAs J.C. Mikkelsen, Jr., and J.B. Boyce, Phys. Rev. Lett., 49 (1982), pp. 1412-1415.

FIG. 2. Near-neighbor distances, Ga-As (lower curve) and In-As (upper curve), vs mole fraction InAs in the alloy $Ga_{1-x}In_xAs$. The average cation-anion spacing calculated from the measured lattice constant, namely, $3^{1/2}a_0/4$ (middle curve), is seen to accurately follow Vegard's Law.

例:InGaAs:化合物半導体

EXAFS解析できるパラメータ(未知数)の数

 $\chi(k) = \frac{1}{k} S_0^2 \frac{N}{R^2} |f(k,\pi)| \sin(2kR + \phi(k)) \exp(-2\sigma^2 k^2 - 2\frac{R}{\lambda})$

ーつのシェルを解析するだけでも、 N, R, σ, E0 という 4つのパラメータが出てくる。

例えばもし、

「第一近接に一種類の原子、第二配圏に二種類の原子を 考えてフィッティングしよう」と思うと、12個ものパラメータが 出てきてしまう。いいのか? EXAFS解析できるパラメータ(未知数)の数

$$\chi(k) = \frac{1}{k} S_0^2 \frac{N}{R^2} |f(k,\pi)| \sin(2kR + \phi(k)) \exp(-2\sigma^2 k^2 - 2\frac{R}{\lambda})$$

> Δ*K*:フーリエ変換した、k空間の範囲 Δ*R*:解析対象にするr空間の範囲

例えばもし、ΔK = 15 - 3 = 12, ΔR = 3 - 2 = 1 だったら

 $(2 \times 12 \times 1)/3.14 = 7.64...$

パラメータ8個がギリギリ、12個は無理。

 $\frac{2\Delta R\Delta K}{\pi}$ +0,1,2 個まで使えることを保証されてるわけではない。 これを越えてはダメ、という限界。

Artemis に関する注意点

Artemis で標準試料のパラメータを FEFF を使って計算する場合、 プログラムの流れに従うと

 Atoms に構造の情報(cifファイル等)を渡して FEFF の入力ファイルを作る
 FEFF で計算を行い、Artemis で使う 後方散乱振幅、位相因子を得る

という手順になる。このため、XAFS解析のためには あらかじめ「構造情報」を得る必要があるように思われがち。

ほんとうは、Atoms の使用は必須では無い !!!!!

(EXAFSの理論式には距離は出てくるが立体配置は含まれない)

「吸収原子種」、「散乱原子種」、「2原子間距離(仮の数値)」 だけを書いた FEFF の入力ファイルを準備すれば十分!!!!

> Atoms + FEFF は、むしろ Athena を使ってスペクトルを 絵として眺めるときに使いましょう。

χ(k) と X(R) に関する小話

1. 位相因子 X(R) のピーク位置は原子間距離?

2. X(R)のピーク形状 ピークが分裂してたら、距離は複数ある?

3. 最大パラメータ数

何に由来する ? ちょっとぐらい超えても良い ?

4. 最大パラメータ数 納得できる ?

5. χ(k) の形と X(R) の形の関係

いじってみよう。

a) 後方散乱振幅、b) 位相因子の 0 次

c) 窓関数、d) デバイワラ因子

d) kⁿ 因子の次数

EXAFSスペクトルに含まれる情報

注意: χ(R) のピーク位置は 原子間距離Rそのものではない。!!

位相因子?

EXAFSスペクトルに含まれる情報

注意: χ(R) のピーク位置は 原子間距離Rそのものではない。!!

$$\chi(k) = \frac{1}{k} S_0^2 \frac{N}{R^2} |f(k,\pi)| \sin(2kR + \phi(k)) \exp(-2\sigma^2 k^2 - 2\frac{R}{\lambda})$$

振動の周波数が $R + C_1$ に変わったことになるので フーリエ変換したときのピーク位置も $R + C_1$ の位置にズレる。

χ(k) と X(R) に関する小話

1. 位相因子 X(R) のピーク位置は原子間距離?

2. X(R)のピーク形状 ピークが分裂してたら、距離は複数ある?

3. 最大パラメータ数

何に由来する ? ちょっとぐらい超えても良い ?

4. 最大パラメータ数 納得できる ?

5. χ(k) の形と X(R) の形の関係

いじってみよう。

a) 後方散乱振幅、b) 位相因子の 0 次、c) 窓関数、 d) デバイワラ因子、d) *kⁿ* 因子の次数

6. 測定範囲(エネルギー)とkの範囲

<u>χ(R)</u>に現れるピークの形状

ピークがある位置の数字を そのまま原子間距離と思ってはいけない

ピークが二つあったとき 距離の違う原子があると 思っていい?

χ(k), X(R) を観賞する為に覚えておきたいフーリエ変換の性質

1. sin, cos をフーリエ変換すると、デルタ関数になる。

フーリエ変換では「どんな周波数成分があるか?」を求めるので sin, cos 等、単一の周波数の関数は、変換後1点だけで値を持つ

χ(k), X(R) を観賞する為に覚えておきたいフーリエ変換の性質

2. 関数の掛け算をフーリエ変換すると、畳み込み積分になる。

??? そもそも、「畳み込み積分」とは???

定義
$$f(t) \overset{ill}{\otimes} g(t) = \int_{-\infty}^{\infty} f(t-\tau)g(\tau)d\tau$$

特別な例 (g(t) がデルタ関数 : δ の場合)

 $f(t) \otimes \delta(t-a) = \int f(t-\tau)\delta(\tau-a) d\tau = f(t-a)$

χ(k), X(R) を観賞する為に覚えておきたいフーリエ変換の性質

デルタ関数を畳み込むと、位置を移動したコピーができると 知ってると、一般の場合に何が起こるかを感覚的に理解するのは簡単。

χ(k), X(R) を観賞する為に覚えておきたいフーリエ変換の性質

2. 関数の掛け算をフーリエ変換すると、 畳み込み積分になる。 関数 f のフーリエ変換を $F{f}$ と表すなら ($F{f(k)} = F(r)$)

XAFSに応用してみよう!

 $\chi(k)$ は、乱暴に言うと $A(k) \times \sin(2kR)$ だと考えると、

 $X(R) = \mathcal{F}\{A \times \sin(2kR)\}\$

↓ 掛け算は畳み込みになる

 $= \mathcal{F}\{A\} \otimes \mathcal{F}\{\sin(2kR)\} = \mathcal{F}\{A\} \otimes \delta(r-2R)$

↓ デルタ関数の畳み込みはコピー/移動

 $= \mathcal{F} \{ A \}$ の原点を2Rに移動したもの

χ(k), X(R) を観賞する為に覚えておきたいフーリエ変換の性質

XAFSに応用してみよう!

 $\chi(k)$ は、乱暴に言うと $A(k) \times \sin(2kR)$ だと考えると、

 $X(R) = \mathcal{F}\{A \times \sin(2kR)\}$ 掛け算は畳み込みになる $= \mathcal{F}\{A\} \otimes \mathcal{F}\{\sin(2kR)\} = \mathcal{F}\{A\} \otimes \delta(r - 2R)$

↓ デルタ関数の畳み込みはコピー/移動

 $= \mathcal{F}{A}$ の原点を2Rに移動したもの

χ(k) と X(R) に関する小話

1. 位相因子 X(R) のピーク位置は原子間距離 ?

2. X(R)のピーク形状 ピークが分裂してたら、距離は複数ある?

3. 最大パラメータ数

何に由来する?ちょっとぐらい超えても良い?

4. 最大パラメータ数 納得できる ?

5. χ(k) の形と X(R) の形の関係

いじってみよう。

a) 後方散乱振幅、b) 位相因子の 0 次、c) 窓関数、 d) デバイワラ因子、d) *kⁿ* 因子の次数

6. 測定範囲(エネルギー)とkの範囲

最大パラメータ数はどこから来る?

測定された有限区間($k = 3 \sim 16 \ bn$)の XAFSスペクトルを変換するとき、その外には、 同じ波形が繰り返しているとして変換している(数学の都合)。

最大パラメータ数はどこから来る?

ここに存在できる一番波長が長い波(正弦波)は、 1区間の長さ(ΔKと書く)に等しい周期をもった波 その周波数(r空間でデルタ関数が立つ位置)は $\frac{2\pi}{\Delta K}$ 周波数は2倍 2番目はその半分 $2 \times$: 3番目は 1/3 周波数は3倍 3 X • $2\pi/\Delta K$ 4番目は 1/4 周波数は4倍 $4 \times$ n番目は 1/n 周波数は n倍 n X

最大パラメータ数はどこから来る?

2番目はその半分 3番目は 1/3	:	周波数は 2倍 周波数は 3倍	2 × 3 ×	
4番目は 1/4	:	周波数は4倍	$4 \times$	$2\pi/\Delta K$
n番目は 1/n	:	周波数は n倍	$n \times$	
		変換して得たス実際には間隔	、ペクト 2π/ΔK —	ルは滑らかに見えているが、 の折れ線。(もしくは棒グラフ)

幅 ΔR の区間をとって解析の対象にするなら、 そこに含まれる、点の数は (Rの横軸は1/2に圧縮されてる!!)

π

 $2\Delta R / (2\pi / \Delta K) = \Delta R \Delta K / \pi$ ある。 各点は実際には複素数で、実数 2つ分の情報を持っているので この区間に含まれる独立な情報の量は $2\Delta R \Delta K / \pi$ 。(区間の端を考慮すると+1?、+2??…) 解析に使える パラメータの数は最大

χ(k) と X(R) に関する小話

1. 位相因子

X(R) のピーク位置は原子間距離?

2. X(R)のピーク形状 ピークが分裂してたら、距離は複数ある?

3. 最大パラメータ数

何に由来する?ちょっとぐらい超えても良い?

4. 最大パラメータ数 納得できる ?

5. χ(k) の形と X(R) の形の関係
 いじってみよう。

 a) 後方散乱振幅、b) 位相因子の 0 次、c) 窓関数、
 d) デバイワラ因子、d) kⁿ 因子の次数

6. 測定範囲(エネルギー)とkの範囲

最大パラメータ数はどこから来る? (蛇足編)

本当か?

自分は、

変換区間外は同じ形が繰り返していると思っているのではなく 窓関数をかけて完全に0にしていると、思っている。 (なので、区間内の積分と、±∞の積分は一致する) そうだとしたら、R空間での情報の密度はもっと高い(無限に至る) のではないか???

最大パラメータ数はどこから来る? (蛇足編)

試しに、繰り返しているスペクトルを間引いて 周期(積分区間の幅)を倍にしてみる

区間の長さが倍になったので、表現できる最低周波数は1/2に。

最大パラメータ数はどこから来る? (蛇足編)

残念!

χ(k) と X(R) に関する小話

1. 位相因子

X(R) のピーク位置は原子間距離?

2. X(R)のピーク形状 ピークが分裂してたら、距離は複数ある ?

3. 最大パラメータ数

何に由来する ? ちょっとぐらい超えても良い ?

4. 最大パラメータ数 納得できる ?

5. χ(k) の形と X(R) の形の関係 いじってみよう。

> a) 後方散乱振幅、b) 位相因子の 0 次、c) 窓関数、 d) デバイワラ因子、d) kⁿ 因子の次数

6. 測定範囲(エネルギー)とkの範囲

<u>χ(k)</u>の形とX(R)の形の関係

http://titan.nusr.nagoya-u.ac.jp/Tabuchi/BL5S1/doku.php?id=tabuchi:chikr

χ(k) と X(R) に関する小話

1. 位相因子

X(R) のピーク位置は原子間距離?

2. X(R)のピーク形状 ピークが分裂してたら、距離は複数ある ?

3. 最大パラメータ数

何に由来する?ちょっとぐらい超えても良い?

4. 最大パラメータ数 納得できる ?

5. χ(k) の形と X(R) の形の関係

いじってみよう。

a) 後方散乱振幅、b) 位相因子の 0 次、c) 窓関数、 d) デバイワラ因子、d) *kⁿ* 因子の次数

6. 測定範囲(エネルギー)とkの範囲

E-k の対応

END 1

- 6. 半導体/固体材料
 - ・Er添加InPのXAFS測定
 - ・Er,O同時添加GaAsのXAFS測定
 - •Mn添加ZnGa₂O₄

III-V 族化合物半導体へのEr添加

Semimetal/semiconductor heterostructures

Semimetal:

(*RE*)*As*, (*RE*)*P*: *NaCl-type* ErP (a = 0.5606nm, ρ = 150µΩcm) ErAs (a = 0.5732nm, ρ = 150µΩcm)

Semiconductor:

III-V semiconductors: zincblende-type InP (a = 0.5869nm) GaAs (a = 0.5653nm)

Mismatch:

 $\Delta a/a = -4.5\%$ for ErP/InP +1.4% for ErAs/GaAs

Applications:

Metal-base transistor Hot-electron transistor Resonant-tunneling transistor etc.

InP/ErP/InP heterostructure

PLスペクトルの成長温度依存性

◇ 成長方法:減圧有機金属気相成長(OMVPE)法
◇ In 原料: TMIn (trimethylindium)
◇ P 原料: TBP (tertiarybutylphosphine)
◇ Er 原料: Er(MeCp)₃ (trimethylcyclopentadienylerbium)

試料	成長温度 Tg[℃]	Er 原料供給 水素流量[sccm]	Er 濃度 [Er] [cm ⁻³]	
#A	550			
#B	580	50	2×10^{18}	
#C	610			
#D	530	125	8×10^{18}	
#E	580	123	0 ~ 10	

(Er 濃度は二次イオン質量分析(SIMS)法により測定)

測定されたXAFSスペクトル

高エネルギー加速器研究機構物質構造科学研究所 放射光研究施設 BL12C

測定から得た動径分布関数

Er 原子位置のモデル

理論計算との比較

PLスペクトルの成長温度依存性とEr原子位置の関係

Substitutional Er in In site

III-V 族化合物半導体へのEr添加

X線CTR散乱測定

<u>C</u>rystal <u>T</u>runcation <u>R</u>od (CTR)

The rod-like distribution of scattered x-ray around a Bragg diffraction peak due to the abrupt termination of crystal periodicity at surface.

What can we obtain?

*) Damping rate: Surface roughness *) Oscillation period: Thickness of each layer *) Oscillation amplitude: Interface abruptness *) Oscillation phase shift: Difference of lattice constants

解析のために仮定した層構造のモデル

Y. Takeda et al.: Appl. Phys. Lett. 82 (1997) 635.

各種のEr原子位置を仮定した解析の結果

Various atom configurations

END 2

- 6. 半導体/固体材料
 - ・Er添加InPのXAFS測定
 - ・Er,O同時添加GaAsのXAFS測定
 - •Mn添加ZnGa₂O₄

Er、酸素共添加GaAsのPL発光スペクトル

With an additional O₂ flow

◆ Er の周囲に O と As が 2 個づつ存在する構造を仮定

XAFS解析の結果とその解釈

Sample	Bond	r [Å]	Ν	σ [Å]
#A	Er-O	2.14	2.1	0.079
	Er-As	2.79	1.7	0.087

(2shell によるカーブ・フィッティング) (解析誤差 … Δr=0.02Å : ΔN、Δσ=20~30%)

(O と As は格子位置に固定)

Er,酸素共添加GaAsのPLスペクトルとEr原子位置

With an additional O_2 flow

- 6. 半導体/固体材料
 - ・Er添加InPのXAFS測定
 - ・Er,O同時添加GaAsのXAFS測定
 - •Mn添加ZnGa₂O₄

標準的なZnGa₂O₄:Mn試料と、発光強度を変化させるために、 高温空気中でアニールした試料を作製した。

測定試料条件

(1)試料A:標準的なZnGa₂O₄:Mn試料 Mn 1mol%

(2)試料B: 試料Aをさらに空気中でアニール1500°C×3h

(3)試料C: 試料Aをさらに空気中でアニール900℃×3h

ZnGa₂O₄:Mn合成方法

ZnGa₂O₄:MnのPL発光スペクトル

空気中でアニールすると発光強度が大きく減少する。

アニールによるXANESの変化

徐々に2,4価のピークが減少し、3価の状態が増えている。

解析に用いた結晶構造モデル

測定データとの比較

Mn K-edge F. T. k=3.5~12 Å⁻¹

理論計算による動径分布の第1,2近接のピーク位置と高さ比の 変化は測定データの変化をよく再現した。

解析結果

理論計算スペクトルとのフィッティングを行い、 第1近接のO原子、第2近接のO原子とGa原子の配位数を決定した。

第2近接配位数

第1近接配位数

アニールによってO原子がMn周辺に侵入している。

XANESより

発光強度が低い試料になると 3価のMnが増加。

EXAFSより

Znサイトを置換したMn周辺に O原子が侵入している。

O原子が侵入することで Mnの価数が変化する。

3価のMnはあまり発光に

寄与しない。

空気中でアニールするとMn周辺にOが侵入し、 あまり発光に寄与しない3価のMnが増加するために 発光強度が変化した。