tabuchi:mlcf法の紹介
差分
このページの2つのバージョン間の差分を表示します。
両方とも前のリビジョン前のリビジョン次のリビジョン | 前のリビジョン | ||
tabuchi:mlcf法の紹介 [2020/05/25 08:39] – mtab | tabuchi:mlcf法の紹介 [2023/11/24 03:17] (現在) – [1.2 MLCF での解析] mtab | ||
---|---|---|---|
行 56: | 行 56: | ||
$\mu t_0$ を $\mu t_0(E) = C_0 + C_1 E$ や $\mu t_0(E) = C_0 + C_1 E^{-3} + C_2 E^{-4}$ の様にパラメータを用いて近似するなら、そのパラメータも最小二乗の対象にして$\alpha_i$と同時に決定することができる。 | $\mu t_0$ を $\mu t_0(E) = C_0 + C_1 E$ や $\mu t_0(E) = C_0 + C_1 E^{-3} + C_2 E^{-4}$ の様にパラメータを用いて近似するなら、そのパラメータも最小二乗の対象にして$\alpha_i$と同時に決定することができる。 | ||
これが MLCF の考え方である。 | これが MLCF の考え方である。 | ||
- | $\mu t0$ として $\mu t_0(E) = C_0 + C_1 E$を採用した場合を具体的に書いてみる。 | + | $\mu t_0$ として $\mu t_0(E) = C_0 + C_1 E$を採用した場合を具体的に書いてみる。 |
\[ | \[ | ||
行 62: | 行 62: | ||
\] | \] | ||
の $\overline{\mu t}$ を | の $\overline{\mu t}$ を | ||
- | $\overline{\mu t}(E) = \frac{\mu t(E)-\mu t_0(E)}{\Delta\mu t} = \frac{\mu t(E)-C_0-C_1 E}{\Delta\mu t}$ | + | \[ |
+ | | ||
+ | \] | ||
と置き換えると、 | と置き換えると、 | ||
\[ | \[ | ||
R = | \Sigma_k \{ \frac{\mu t(E)-C_0-C_1 E}{\Delta\mu t} - \Sigma_i \alpha_i S_i(E_k) \} |^2 | R = | \Sigma_k \{ \frac{\mu t(E)-C_0-C_1 E}{\Delta\mu t} - \Sigma_i \alpha_i S_i(E_k) \} |^2 | ||
\] | \] | ||
- | と書ける。$\Delta\mu t > 0$なので、$R \Delta\mu t = R'$ と書くことにすると、 | + | と書ける。$R \Delta\mu t = R'$ と書くことにすると、 |
\[ | \[ | ||
R' = | \Sigma_k \{ \mu t(E)-C_0-C_1 E - \Sigma_i \alpha_i \Delta\mu t S_i(E_k) \} |^2 | R' = | \Sigma_k \{ \mu t(E)-C_0-C_1 E - \Sigma_i \alpha_i \Delta\mu t S_i(E_k) \} |^2 | ||
\] | \] | ||
- | の $R' | + | $\Delta\mu t > 0$なので、 |
+ | $R' | ||
さらに、表記を簡単にするために $\alpha_i \Delta\mu t = \alpha_i' | さらに、表記を簡単にするために $\alpha_i \Delta\mu t = \alpha_i' | ||
行 91: | 行 94: | ||
- | + | ----- | |
+ | 当 web ページとその下のページに関するお問い合わせ等ございましたら、[[連絡先|連絡先]]にご連絡をお願いします。 \\ | ||
+ | [[start|田渕のページのルート]] | ||
tabuchi/mlcf法の紹介.1590395995.txt.gz · 最終更新: 2020/05/25 08:39 by mtab