XAFS夏の学校2013 **蛍光XAFS測定 ダイジェスト版**

名古屋大学 シンクロトロン光研究センター

田渕雅夫

蛍光XAFS 測定とは

XAFS(X-ray absorption fine structure) スペクトルを得るために、透過ではなく 2次的に発生する蛍光X線を測定する。

蛍光XAFS 測定の 特徴

×試料中の希薄元素を測定できる ×X線が透過しない試料も測定可能

GaAs:Zn(1mol%)のXAFSスペクトル(計算)

蛍光XAFS測定の注意点

1. 原理的に、条件を満たした時のみ正しいXAFSスペクトル 正しいスペクトルになる条件を把握しておく 蛍光XAFS測定の適用範囲を正しく認識しておく 2. 様々な妨害信号がある 本質的に逃げられないものも多いが、できるだけ 妨害信号を減らす努力をする 注意!エネルギー分解能が有る場合でも (XAFSスペクトルに寄与する信号を選択できる場合でも) 妨害信号が測定の限界を決めることが多い 3. 他種類有る検出器の特徴を理解し、 選択肢があるなら使い分ける

1. 蛍光XAFS測定の基本となる、
 蛍光収量と吸収係数の関係式の導出
 ▲ 正しいXAFSとなる条件の把握
 2. 蛍光XAFS測定を行うのが適当な範囲の具体的な検討
 3. 蛍光XAFS測定時の好ましい試料配置と
 様々な妨害信号の存在を知る

蛍光収量と吸収係数の関係(1)

× 蛍光X線強度からXAFSスペクトルを得る。 蛍光X線強度Fと吸収係数mの関係は?

蛍光収量と吸収係数の関係(2)

* 蛍光X線強度からXAFSスペクトルを得る。 透過法の測定で、 $I_0 \ge I_1$ がわかるとMがわかるのは、 $I_1 = I_0 \exp(-Mt)$ だと分かっているので 1 I_0

$$m\mu - \frac{1}{t}\log_e \frac{I_0}{I_1}$$
と計算できるから。

蛍光収量と吸収係数の関係(3)

× 蛍光X線強度からXAFSスペクトルを得る 蛍光収量 Fと吸収係数 mの関係は?

蛍光収量と吸収係数の関係(4)

仮定:入射X線(励起)を試料表面に垂直に入射し、
 発生した蛍光を試料表面垂直方向で観察する
 ・試料の線吸収係数 m_T(E)
 T:Total 試料中に含まれる全元素の効果の合計

・発生した蛍光X線のエネルギー E_F 、これは定数

蛍光収量と吸収係数の関係(5) $I(x) = I_0 \exp\{-m_T(E)x\} \qquad f(x) \, dx = \partial m(E)I(x) \, dx$ $F = \hat{0}_0^t f(x) \exp\{-m_T(E_F)x\} dx$ $= \hat{0}_0^t am(E)I_0 \exp\{-m_T(E)x\}\exp\{-m_T(E_F)x\}dx$ <u>𝑋</u> 吸収係数 蛍光効率 $m_{\mathrm{T}}(E)$ m(E), a $I(x) f(x), E_{\rm F}$ 入射X線 I_0 , E $m_{T}(E_{F})$ 吸収 蛍光X線発生 蛍光X線 F

蛍光収量と吸収係数の関係(5) $I(x) = I_0 \exp\{-\mathcal{M}_T(E)x\} \quad f(x) \, dx = \mathcal{A}(E)I(x) \, dx$ $F = \check{0}_0^t f(x) \exp\{-m_{\mathrm{T}}(E_{\mathrm{F}})x\} dx \quad dI(x) = -m(E)I(x) dx$ $= \hat{0}_0^t am(E)I_0 \exp\{-m_T(E)x\}\exp\{-m_T(E_F)x\}dx$ <u>𝑋</u> 吸収係数 蛍光効率 $m_{\mathrm{T}}(E)$ m(E), a入射X線 I_0 , E $I(x) f(x), E_{\rm F}$ $m_{\rm T}(E_{\rm F})$ 吸収 蛍光X線発生 蛍光X線 F

蛍光収量と吸収係数の関係(6)

$$F = \hat{e} - \frac{m(E)}{\hat{e}} I_0 \exp\{-(m_T(E) + m_T(E_F))x\} \hat{u}_0$$

4

光収量を

えるときの

$$= \partial \frac{m}{m_{T} + m_{T}^{F}} I_{0} \{1 - \exp((m_{T} + m_{T}^{F})t)\}$$

$$\frac{\text{$\exists x_w$}}{\text{$\exists x_x$}}$$

吸収係数 蛍光効率 m(E), a入射X線 I_0 , E $I(x) f(x), E_{\rm F}$ 吸収 蛍光X線発生 蛍光X線 F

蛍光収量と吸収係数の関係(7)

蛍光強度

$$F = \Im \frac{m}{m_{\mathrm{T}} + m_{\mathrm{T}}^{\mathrm{F}}} I_0 \{1 - \exp((m_{\mathrm{T}} + m_{\mathrm{T}}^{\mathrm{F}}) t)\}$$

$$m_{T}^{F}$$
: 蛍光X線の吸収係数(定数)
 $m_{T} = m'_{T} + m : \mu を含んでいる!$

Fとµの関係は単純な FµmI₀,

蛍光収量と吸収係数の関係(8)

どんな影響が?

$$F = \frac{m}{m_{\mathrm{T}} + m_{\mathrm{T}}^{\mathrm{F}}} I_0 \{1 - \exp(m_{\mathrm{T}} + m_{\mathrm{T}}^{\mathrm{F}}) t\}$$

 $(m_{T} + m_{T}^{F})t$ が4ぐらい以上あれば、 1 - exp - $(m_T + m_T^F)t$ この項は1%以上の精度で1. M $\frac{1}{m_{\mathrm{T}} + m_{\mathrm{T}}^{\mathrm{F}}} = \frac{1}{m_{\mathrm{T}} + m_{\mathrm{T}}^{\mathrm{F}}}$ $= \frac{1}{\substack{\mu' T + mT \\ m}} \quad \begin{array}{c} \textbf{k}, \mu \textbf{i} \textbf{k} \neq \textbf{k}, \mu \textbf{k} \neq \textbf{k}, 1 (\textbf{定数}) \\ \textbf{k} \neq \textbf{k}, \mu \textbf{k} \neq \textbf{k}, \mu \textbf{k} \neq \textbf{k}, 1 (\textbf{cx} \textbf{k}) \\ \textbf{k} \neq \textbf{k}, \mu \textbf{k}, \mu \textbf{k}, \mu \textbf{$

蛍光収量と吸収係数の関係(9)

蛍光収量と吸収係数の関係(10)

どんな時に

$$F = \partial \frac{m}{m_{\rm T} + m_{\rm T}^{\rm F}} I_0 \{1 - \exp((m_{\rm T} + m_{\rm T}^{\rm F}))t\}$$

は、

 $F \mu m I_0, \quad \frac{F}{I_0} \mu m$ だと思って良いのか。

蛍光収量と吸収係数の関係(11)

1. 薄い場合: $(m_T + m_T^F) t$ が十分に小さい場合

$$F = \Im \frac{m}{m_{\mathrm{T}} + m_{\mathrm{T}}^{\mathrm{F}}} I_0 \{1 - \exp((m_{\mathrm{T}} + m_{\mathrm{T}}^{\mathrm{F}}) t)\}$$

$$\exp x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \dots \gg 1 + x \quad : \quad x << 1$$

 $1 - \exp((m_T + m_T^F) t) \ge 1 - \{1 - (m_T + m_T^F) t\} = (m_T + m_T^F) t$

$$F \gg a \frac{m}{m_{T} + m_{T}^{F}} I_{0} \frac{m_{T} + m_{T}^{F}}{m_{T} + m_{T}^{F}} t = a I_{0} m t$$

信号強度が
試料厚さに依存する

蛍光収量と吸収係数の関係(12)

2. 厚く希薄な場合: $(m_{T} + m_{T}^{F})t$ が十分に大きく $m << m_{T}$ $(m_{T} = m'_{T} + m \gg m_{T}')$

$$F = \partial \frac{m}{m_{T} + m_{T}^{F}} I_{0} \{1 - \exp((m_{T} + m_{T}^{F}))t\}$$

$$1 - \exp((m_{T} + m_{T}^{F}))t \gg 1 : (m_{T} + m_{T}^{F})t \gg 1$$

$$F \gg \partial \frac{m}{m_{T} + m_{T}^{F}} I_{0} \gg \partial \frac{m}{m_{T}^{'} + m_{T}^{F}} I_{0}$$

$$\frac{m_{T}^{'} + m_{T}^{F}}{m_{T}^{'} + m_{T}^{F}} I_{0}$$

$$\frac{m_{T}^{'} + m_{T}^{F}}{m_{T}^{'} + m_{T}^{F}} I_{0}$$

蛍光収量と吸収係数の関係(13)

1. 薄い場合: $(m_{T} + m_{T}^{F}) t$ が十分に小さい場合 どの程度「薄」ければ「薄い」と言えるのか。 $\exp x = 1 + x + \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + ... \gg 1 + x$: x << 1 $1 - \exp - (m_{T} + m_{T}^{F}) t \gg 1 - \{1 - (m_{T} + m_{T}^{F}) t\} = (m_{T} + m_{T}^{F}) t\}$

exp をテーラー展開した時の 1 が消えているので、 主要な項 x に対して x²/2 が無視出来るかどうかを 考える必要がある。(x²/2)/x = x/2 が誤差の割合。 x は 0.01~0.001 ぐらいにはなってほしい。 Cu箔を対象にCuのXAFSを測定するなら 0.1µm 程度

蛍光収量と吸収係数の関係(14)

 $Cuom_0$ を使い、振動成分は適当に発生させた。

蛍光収量と吸収係数の関係(15)

2. 厚く希薄な場合: $(m_T + m_T^F) t$ が十分に大きく $m << m_T$ $(m_T = m'_T + m \gg m_T')$

どの程度「厚」く、どの程度「希薄」なら良いのか。 1 - exp - $(m_T + m_T^F) t \gg 1$ この条件は緩い(?) $(m_T + m_T^F) t$ が、4で1%、6で0.1%の精度になる。

 $m_{T} = m'_{T} + m \gg m_{T}'$ 「厚い」条件を満たしているなら 総吸収に占める μ の割合が そのまま精度になる。

蛍光収量と吸収係数の関係(16)

$(m_{\rm T} + m_{\rm T}^{\rm F}) t \gg 6$

蛍光収量と吸収係数の関係(17)

$(m_{\rm T} + m_{\rm T}^{\rm F}) t \gg 4$

蛍光収量と吸収係数の関係(まとめ)

1. 薄い場合: $(m_{T} + m_{T}^{F}) t$ が十分に小さい場合

・「薄い」条件を満たすと理想的に、 $m \mu F / I_0$ となる。 ・「薄い」条件を本当に満たすのは意外と大変。

2. 厚く希薄な場合: $(m_{T} + m_{T}^{F})t$ が十分に大きく $m << m_{T}$ $(m_{T} = m'_{T} + m \gg m_{T}')$

- 「厚く希薄」条件を満たすのは比較的簡単。
- ・条件を満たしても、エネルギー依存性がある m'_{f} の 効果が残り、理想的に $m \mu F / I_0$ とはならない。

蛍光法を選択する範囲(1)

検出フォトン数_{F'} = $\frac{W}{4\rho}F \approx \frac{W}{4\rho}a \frac{Dmt}{(m'_T + m_T^F)t}I_0$ 厚く希薄 $F' = \frac{W}{4\rho}F \approx \frac{W}{4\rho}aI_0Dmt$ 薄い 入射×線強度 $I_0 = 1 \, (10^{10} \, \text{[cps]})$ 半径0.5cm(r)のSSD x 19素子を10cm(R)の位置に置く: **立体角** $\frac{W}{4\rho} = \frac{19\rho r^2}{4\rho R^2} = \frac{19 \text{ }^2 0.5 \text{ }^2 0.5}{4 \text{ }^2 10 \text{ }^2 10} = 0.012$ **蛍光分岐比** a = 0.5

蛍光分岐比

コアホールの緩和時に蛍光X線が放出される割合

1. M. O. Krause, J. Phys. Chem. Ref. Data 8, 307 (1979).

2. M. O. Krause and J. H. Oliver, J. Phys. Chem. Ref. Data 8, 329 (1979).

蛍光法を選択する範囲(2)

 $\frac{W}{4\rho}aI_0 = 0.012 \text{ (}0.5 \text{ (}1 \text{ (}10^{10} \text{ = }6.0 \text{ (}10^7 \text{)}10^7 \text{)})$

$$\frac{DM}{m_{\rm T} + m_{\rm T}^{\rm F}} := M \quad \text{or} \quad DMt := M$$

 $I_0 = 1 \ 10^{10} [\text{cps}]$ $F' = 6.0 \ 10^{7} \ M$ 総計数率 1チャンネル 積分時間 実験時間 総カウント M(目安) [cps] [cps] **[S]** Х 1 $5 \times 6.0 \times 10^7$ 6.0 x 10⁵ 数秒 3 x 10⁶ 0.01 Х 0.1 5 × 6.0 x 10⁶ 3 x 10⁵ 6.0 x 10⁵ 1**分** 0.1 3 x 10⁴ 1 0.01 怪しい6.0 x 10⁵ 6.0 x 10⁵ 10分 1時間 0.001 6.0 x 10⁴ 3000 10 6.0 x 10⁵ 1×10^{-4} 10時間 6000 300 100 6.0 x 10⁵ X 1×10^{-5} 600 30 6.0 x 10⁵ 4日いや 1000

「膜厚が薄い」ケースでは、M=0.01でも全体の吸収が大きいと良い近似にならない

統計ノイズ(1)

 ある現象(イベント)が起こる確率が決まっている。
 考えている現象は、起こるか起こらないかの 2者択一で、中間的な現象は無い。
 多数回の同一測定である現象が「起こった」回数を 数えることで確率を測定する。

現象の発生がN回観測された時、 $そこに含まれる誤差は、<math>\sqrt{N}$ 。

> 誤差を 0.1% にしたければ、 N = 1,000,000が必要。 $\sqrt{N} / N = 0.001$ N = 500,000では 0.14% N = 100,000では 0.32%

Ê	计法法	を選打	尺する	范囲(3)	厚く希薄	な場合			
CuSO,水溶液を例に考えてみる。									
	Cu の K 吸収端で H ₂ O の $m'_T + m_T^F$ は、約 120。								
	(シリカ : 440, アルミナ: 400, BN: 64)								
$\frac{Dm}{m_{\rm T} + m_{\rm T}^{\rm F}} := M \qquad I_0 = 1 {}^{\prime} 10^{10} \rm{[cp]}$									
	mol %	M	総計数率 [cps]	積分時間 [s]	総カウント	実験時間 (目安)			
Х	0.1	0.06	3.6 x 10 ⁶	0.1	3.6 x 10 ⁵	1 分			
	0.01	0.006	3.6 x 10 ⁵	1	3.6 x 10 ⁵	10 分			
	0.001	6 x 10 ⁻⁴	3.6 x 10 ⁴	10	3.6 x 10 ⁵	1 時間			
	1 x 10 ⁻⁴	6 x 10 ⁻⁵	3600	100	3.6 x 10 ⁵	10 時間			
Х	1 x 10 ⁻⁵	6 x 10 ⁻⁶	360	1000	6.0 x 10 ⁵	4日いや			

単純な計算をしているので、時間はあくまで目安、実際には数倍以上必要かも。

蛍光法を選択する範囲(3') 厚く希薄な場合 CuSO₄ 水溶液を例に考えてみる。 Cu の K 吸収端で H₂O の $m'_T + m_T^F$ は、約 120。

(シリカ:440, アルミナ:400, BN:64...)

 $I_0 = 1 \, 10^{10} \, \text{[cps]}$

	mmol/L	M	<mark>総計数率</mark> [cps]	積分時間 [s]	総カウント	実験時間 (目安)
	1000	1 ダメ	6.0 x 10 ⁷	0.01	6.0 x 10 ⁵	数秒
	100	0.1 <mark>ダ</mark> フ	6.0 x 10 ⁶	0.1	6.0 x 10 ⁵	1 分
	10	0.01	6.0 x 10 ⁵	1	6.0 x 10 ⁵	10 分
	1	0.001	6.0 x 10 ⁴	10	6.0 x 10 ⁵	1 時間
	0.1	1 x 10 ⁻⁴	6000	100	6.0 x 10 ⁵	10 時間
(0.01	1 x 10 ⁻⁵	600	1000	6.0 x 10 ⁵	4日いや
	単純た計	笛たしてい	ろので 時間	けあくまで日	安 実際には粉ば	い上が更かま

L	计法法	を選打	マする	范囲(3)	') 厚く希認	専な場合		
CuSO ₄ 水溶液を例に考えてみる。								
Cu の K 吸収端で H ₂ O の <i>m</i> ' _T + <i>m</i> ^F _T は、約 120。								
	(シリカ:440, アルミナ:400, BN:64) $\frac{Dm}{m_{\rm T} + m_{\rm T}^{\rm F}} := M \qquad I_0 = 1 \ 10^{10} [\rm cps]$							
		1 -						
	Wt %	M	<mark>総計数率</mark> [cps]	積分時間 [s]	総カウント	実験時間 (目安)		
Х	Wt % 1	М 0.075 ў	<mark>総計数率</mark> [cps] ✔ 4.5 x 10 ⁶	積分時間 [s] 0.1	<mark>総カウント</mark> 3.6 x 10 ⁵	<mark>実験時間</mark> (目安) 1分		
X	Wt % 1 0.1	M 0.075ダ 0.0075	総計数率 [cps] ★ 4.5 x 10 ⁶ 4.5 x 10 ⁵	積分時間 [s] 0.1 1	<mark>総カウント</mark> 3.6 x 10 ⁵ 3.6 x 10 ⁵	<mark>実験時間</mark> (目安) 1分 10分		
X	Wt % 1 0.1 0.01	M 0.075ダ 0.0075 7.5 x 10 ⁻⁴	総計数率 [cps] ✓ 4.5 x 10 ⁶ 4.5 x 10 ⁵ 4.5 x 10 ⁴	積分時間 [s] 0.1 1 10	総カウント 3.6 x 10 ⁵ 3.6 x 10 ⁵ 3.6 x 10 ⁵	<mark>実験時間</mark> (目安) 1分 10分 1時間		
X	Wt % 1 0.1 0.01 0.001	<i>M</i> 0.075 0.0075 7.5 x 10 ⁻⁴ 7.5 x 10 ⁻⁵	総計数率 [cps] ✓ 4.5 x 10 ⁶ 4.5 x 10 ⁵ 4.5 x 10 ⁴ 4500	積分時間 [s] 0.1 1 10 100	総カウント 3.6 x 10 ⁵ 3.6 x 10 ⁵ 3.6 x 10 ⁵ 3.6 x 10 ⁵	実験時間 (目安) 1分 10分 1時間 10時間		
x	Wt % 1 0.1 0.01 0.001 1 x 10 ⁻⁴	<i>M</i> 0.075 0.0075 7.5 x 10 ⁻⁴ 7.5 x 10 ⁻⁵ 7.5 x 10 ⁻⁶	総計数率 [cps] ✓ 4.5 x 10 ⁶ 4.5 x 10 ⁵ 4.5 x 10 ⁴ 4500 450	積分時間 [s] 0.1 1 10 100 1000	総カウント 3.6 x 10⁵ 3.6 x 10⁵ 3.6 x 10⁵ 3.6 x 10⁵ 6.0 x 10⁵ 	実験時間 (目安) 1分 10分 1時間 10時間 4日いや		

蛍光法を選択する範囲(4) 薄い場合

Cu 金属箔を例に考えてみる。

$\left \right $		///////	$I_0 = 1^{-100} [cps]$				
$\langle \rangle$	厚さ [nm]	面密度 [個 /cm ²]	M	総計数率 [cps]	積分時間 [s]	総カウント	実験時間 (目安)
X	5000	4 x 10 ¹⁹	1 ダメ	6.0 x 10 ⁷	0.01	6.0 x 10 ⁵	数秒
K	500	4 x 10 ¹⁸	0.1 <mark>ダ</mark> ン	6.0 x 10 ⁶	0.1	6.0 x 10 ⁵	1 分
	50	4 x 10 ¹⁷	0.01怪し	ι 6.0 x 10 ⁵	1	6.0 x 10 ⁵	10 分
	5	4 x 10 ¹⁶	0.001	6.0 x 10 ⁴	10	6.0 x 10 ⁵	1 時間
	0.5	4 x 10 ¹⁵	1 x 10 ⁻⁴	6000	100	6.0 x 10 ⁵	10 時間
<	0.05	4 x 10 ¹⁴	1 x 10 ⁻⁵	600	1000	6.0 x 10 ⁵	4日いや

10

単純な計算をしているので、時間はあくまで目安、実際には数倍以上必要かも。

蛍光法を選択する範囲(5) 強い光源の利用 測定の上限を決めるのはXAFSスペクトルが歪まない条件

 I_0 が強くなると測定可能な下限濃度は下がるか?

弾性散乱や母体の蛍光は、I₀の数% 程度以上あるので検出器の立体角 1/100 として、I₀が 1x10¹⁰のとき、 総計数率で 1x10⁶程度あるのも普通。

I₀が 1x10¹¹ 程度なら有効に使える
 可能性があるが、それ以上では
 検出器の飽和を招くので
 無駄になる可能性が高い。
 (現在の SSD の計数率を基準に考えている)

統計ノイズ(2)

背景Bが無いとき S の揺らぎ :√S = 10程度 (約 10%) **背景Bがあると**

S+B の揺らぎ: $\sqrt{S+B} = 22$ 程度 100程度のSに対して約 22%

Bをきれいに差し引けても S<mark>の精度は落ちる!</mark>

Sの統計ノイズ $N_1 = \sqrt{S} \ge$ Bの統計ノイズ $N_2 = \sqrt{B}$ の合計は $N = \sqrt{S + B} = \sqrt{N_1^2 + N_2^2}$

背景Bがなく、約100のSだけが有るとき 揺らぎを1%にしたければ 100倍のカウントを稼げば良い 揺らぎ:√100´100/(100´100)=0.01 検出器の面積を増やす、 距離を近づける、 いの強度を上げる、 測定時間を延ばす

積分範囲を広げる(?)....

約400の背景Bの上に、約100のSが有るとき 揺らぎを1%にしたければ 100倍のカウントを稼いでも足りない 揺らぎ: $\sqrt{500,100}/(100,100) = 0.022$ 200倍でも 揺らぎ: $\sqrt{500,200}/(100,200) = 0.016$ 500倍でようやく $\sqrt{500,500}/(100,500) = 0.01$

測定時の配置と妨害信号

蛍光測定の際に考えるべき配置と妨害信号

- 0. 蛍光収量の角度依存性
- 1. 弾性散乱:トムソン散乱
- 2. 弾性散乱:回折
- 3. 非弾性散乱: コンプトン散乱
- 4. 共存元素の蛍光X線
- 5. バックグラウンドノイズ (デッドタイム)
- 6. 非弾性散乱: ラマン散乱
- 7. エスケープピーク(検出器内での非弾性散乱)

角度依存性がある

測定時の配置と妨害信号(1) 配置との関係(1)

0. 蛍光収量の角度依存性 **試料表面に対して** X線が入射する角度 qと、 蛍光X線を観察する角度 fを考えると、 深さx まで侵入した時の入射、脱出の光路長は それぞれ、xとx $\cos q$ $\cos f$

測定時の配置と妨害信号(1) 配置との関係(2)

「薄い」ケースでは、 $\cos q$, $\cos j$ は直接は残らない。 $F = amtI_0$

- 薄膜を支えるベースがある場合、ベースにX線が侵入すると、 バックグラウンドを発生するので、 低角(Q > 90)で入射した方が良い。
- 2. 放射光は通常、横長の断面形状をしているので、 試料を水平置きにしたほうが良い。
- 3. 入射光をエッジに当てると強い散乱が出るので 試料形状にあわせてスリットの開口を調節する。

測定時の配置と妨害信号(1) 配置との関係(3)

「厚くて希薄」なケースでは、

- 1. 試料の厚み全体が蛍光源になるので、 試料形状と配置の仕方にあまり意味は無い。
- M_Tが持つエネルギー異存性の影響を小さくしたいので cosqを大きく、cosf を小さく(垂直入射、面内観察) した方が良いが程度問題。 (45度入射、検出で特に問題ない)

理想的に「薄い」「厚い」と見なせない場合には角度を 検討する価値あり。

- 入射X線の電場に揺さぶられた電子が 新たに放射源となって放射する光
- ・振動の周波数が同じなのでエネルギーは同じ
- ・微小振動子(ダイポール)が発光源なので
 振動方向に垂直な面内に最も強い光が出る。
- ・振動方向(入射X線の電場方向)には光が出ない。
- ・電場ベクトルに対する角度をqとすると、 q方向の散乱強度は、 $\sin^2 q$ に比例する。

検出器は、試料と同じ高さ、 入射 X線と直角の方向に置く!

測定時の配置と妨害信号(2)トムソン散乱(2)

測定時の配置と妨害信号(3)回折(1)

XAFSの測定は、入射X線のエネルギーを変えながら 測定しているので、エバルト球の半径を変えながら 回折測定をしているのと同じ。(ラウエパタンの測定と同じ)

測定時の配置と妨害信号(3)回折(2)

回折が起こった時の測定例

 ・ IOと無関係に、鋭い ピーク状のノイズが出る
 ・ 一部の検出器だけに出る (時々全部に出ることも)
 ・ 試料や検出器の角度を 変えると現れ方が 変わる。

- 配置を変えて必要な
 エネルギー範囲に入らないようにする
- 回折の入った検出器は
 諦める。
- 試料を回転させる

測定時の配置と妨害信号(4) コンプトン散乱(1)

3. 非弾性散乱: コンプトン散乱

粒子としての光が電子と衝突した時の散乱。 光と電子のエネルギーと運動量の保存だけを考えると 光のエネルギー変化の角度依存性が正しく決まる。

散乱光 E' 入射光 E Ű $\frac{1}{E'} - \frac{1}{E} = \frac{E - E'}{EE'} = \frac{1}{mc^2} (1 - \cos q) = \frac{1 - \cos q}{512} [1/keV]$ $E - E' = \frac{EE'}{mc^2}(1 - \cos q) \gg \frac{E^2}{mc^2}(1 - \cos q)$

		1 0039
$\overline{E'}$	\overline{E}	512
<i>E</i> -	<i>E</i> '»	$\frac{E^2}{512}(1-\cos \varphi)$

E [keV]	<i>E'</i> (真)	<i>E'</i> (近似)	∠E (真)	∠E (近似)
5	4.95	4.95	0.05	0.05
10	9.81	9.80	0.19	0.20
15	14.57	14.56	0.43	0.44
20	19.25	19.22	0.75	0.78
25	23.84	23.78	1.16	1.22
30	28.34	28.24	1.66	1.76

測定時の配置と妨害信号(4) コンプトン散乱(3)

測定時の配置と妨害信号(5) 共存元素(1)

4. 共存元素の蛍光X線

測定時の配置と妨害信号(5) 共存元素(2)

Z-1フィルタを入れてみる

- AI 箔等、低エネルギーカットのフィルタを入れてみる
- ・諦めて実験計画の段階で考慮に入れる

測定時の配置と妨害信号(5) 低エネルギーフィルター

AI箔を入れることで、相対的に低エネルギー側の蛍光を 抑制できる。

測定時の配置と妨害信号(6) デッドタイム

計数型の検出器は、ひとつの信号を処理(数える)している間、 別の信号が来ても数えられない : dead time ほぼ同時に信号が来ると、間違った大きさの信号として 計数される。dead time が大きい時ほど頻繁に起こる。

測定時の配置と妨害信号(7) ラマン散乱(1)

GaAs

励起光のエネルギー変化に 追随してピーク位置が 変化する散乱

測定時の配置と妨害信号(7) ラマン散乱(3)

測定時の配置と妨害信号(まとめ)

- 0. 蛍光収量の角度依存性
 - 大きくは効かない。
- 1. 弾性散乱:トムソン散乱
 - 試料と同じ高さ、入射X線に直角方向に検出器を置く。
- 2. 弾性散乱: 回折
 - 出たら試料の角度を変えて逃げる。(or 連続回転させる)
- 3. 非弾性散乱: コンプトン散乱

実際の測定に影響はあまりない。

あると知っておく。見ても驚かない。

4. 共存元素の蛍光X線

Z-1、AI フィルタ等。ダメなら諦める。

5. バックグラウンドノイズ (デッドタイム)

計数率を下げる。入射X線を弱める。検出器を遠ざける

6. 非弾性散乱: ラマン散乱 あると知っておく。見ても驚かない。